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We study the two-dimensional one-component plasma. We show that given a 
bound on the one-particle correlation functions in the thermodynamic limit the 
canonical free energy is independent or free of the Dobrushin-type boundary 
conditions obtained by putting outside the vessel a regular configuration of fixed 
charges. 
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1. INTRODUCTION 

In this paper we study a classical mechanical system of N discrete point 
charges immersed in a continuous uniform (i.e., homogeneous) neutralizing 
background in a two-dimensional domain. This is a model which has been 
studied extensively in plasma physics under the name "two-dimensional 
one-component plasma" (or short "OCP-plasma")--see, e.g., Ref. 1 and 
references therein. It is also known under the name of two-dimensional 
"jellium model, ''(2'3) and has been applied, e.g., in metal physics, astrophys- 
ics, and to the study of electrolyte solutions. A problem which is often 
discussed in this model (and the corresponding two-dimensional versions) is 
the existence of a crystalline phase--see, e.g., Refs, 4-6 (in one dimension 
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this has been proven(7)). In such discussions the possibility of a dependence 
of the canonical free energy in the thermodynamic limit of the different 
boundary conditions has been advanced--see, e.g., Ref 2. In the case of 
lattice models with short-range interactions, in all dimensions, the indepen- 
dence of the canonical free energy density on boundary conditions is well 
known--see, e.g., Ref. 8. This independence result is also known for certain 
continuous short-range classical statistical models of gases, O) for the mod- 
els studied in connection with two-dimensional Euclidean quantum fieldsw 
see, e.g., Refs 10-12--and in short-range models of quantum statistical 
mechanics--see, e.g., Ref. 13. In all these cases the short-range nature of 
forces plays an essential role. The fact that the two-dimensional jellium 
model has long-range (logarithmically increasing!) forces causes problems 
in this respect. The existence of the thermodynamic limit for the canonical 
free energy density with free (i.e., open) boundary conditions has been 
proven by Sari and Merlini (3) (the three-dimensional case had been treated 
by Lieb and Narnhofer(2)). However, the dependence or independence of 
boundary conditions has not been proven, to our knowledge. 

In the present paper we make a step in this direction by showing that 
independence within a class of boundary conditions follows from a bound 
on the one-particle correlation function. The boundary conditions we 
consider are of the type of a fixed crystalline configuration of point charges 
outside a bounded region, with neutralizing homogeneous background. 
Such boundary conditions being an analog of the boundary conditions with 
all spin + 1 (or - 1) outside a finite region in the case of the Ising model, 
one might expect a symmetry breakdown of the equilibrium Gibbs state, 
similarly as in the Ising model. This is still an open question for the jellium 
model. 

Our independence result implies that in order to find possible phase 
transitions one should investigate the analytic properties of the (unique) 
free energy in the thermodynamic limit. (See also the discussion in Refs. 
14-18.) 

We shall now describe briefly the models we consider and our results. 
We consider a bounded domain A and the classical interaction energy 
given by 

N N 
1 Eor (x,x,)dx+ - O2s y)axdy (l l) 

i<j i = 1  J A  
1 

where x = ( x  I . . . . .  x i . . . . .  X N ) ,  X i ,  i = 1 . . . . .  N being the coordinates of 
N positive unit charges. O = N/[A[ is the constant background density (so 
that 0[A I = N is the negative charge in A, with volume [A[, balancing 
exactly the positive charge N in A). q~ is the two-dimensional Coulomb 
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potential, i.e., the kernel of A-1, A being the Laplacian (i.e., in the case of 
free boundary conditions: cp(x,y)==.-(1/2~r)lnlx-yl, with I I the dis- 
tance of N2). The first term in H A represents thus the interaction between 
the positive charges, the second the one between the positive charges and 
the background, and the third term the one given by the self-interaction of 
the background. It has been shown in Ref. 3 that H A is lower bounded. The 
corresponding canonical free energy (density) 

1 In QA, QA-- 1 fA fa -= filAi ~. .  e x p [  - flHA(X) ] dx 

is well defined. Let now A 0 be a larger bounded domain such that 
plA 0 - A[ is again an integer. We place charges + 1 at each point of some 
discrete subset Y of A 0 - A (in the most interesting applications Y will be a 
lattice), so that the total positive charge in A 0 - A  is precisely 01A0- AI. 
We look at these charges at fixed position in A 0 - A  as a "Dobrushin 
boundary condition" for the configuration inside A. We then define 

with 

HA,Ao ------ H A + VA,ao 

N 

v , o-E f (x,y)d  
i=1 y@Y y ~ y  A 

N 

VA,Ao gives the interaction between the charges in A and in Y, and precisely 
the first term the one of the positive charges, the second for the positive 
charges in Y and the background in A, the third the one of the positive 
charges in A and the background in A 0 - A ,  and the fourth between the 
backgrounds in A and A 0 - A. Note that we do not consider in Ira, & the 
self-energy of the system in A 0 - A. Define the canonical free energy given 
by HA, & as follows: fa,&------- -(f l[A[) -lln Oa,A 0, wi th  OA.Ao the canonical 
partition function associated with HA,ao, i.e., 

QA,Ao=__(N! )-I s ] dx 

We call the system described by (H A, fA) "the system with free boundary 
condition" and the one described by (HA, &, fA,&) "the system with 
Dobrushin boundary condition." In the present paper we study the quanti- 
ties fA and fA,& and prove that, roughly speaking, for suitable choices of Y, 
the thermodynamic limits of these quantities coincide, i.e., the canonical 
free energy is the same for free and Dobrushin boundary conditions 
provided one has a certain bound on correlation functions. (18) We note that 
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this implies the uniqueness (in the sense of independence from the men- 
tioned boundary conditions) of the thermal pressure. Whether the kinetic 
pressure is also unique is not discussed here. We also do not discuss the 
problem of whether a Dobrushin boundary condition may induce a symme- 
try breaking of the state as ]A I ~ oo at low temperature (large/~) giving rise 
to a "crystal." However, our result can be combined with an argument 
given recently (15) for the two-dimensional 1/r potential to obtain some 
results concerning the domain of nonexistence of long-range positional 
crystalline order in the two-dimensional jellium model. (19) We would like to 
mention that the possibility of the breaking of rotation symmetry (direc- 
tional ordering) of the state has also been discussed recently. (16'17) 

Let us now briefly give a few details on the content of the sections: 
In Section 2 we study the jellium model in a square A, A 0 being a 

concentric square and the Dobrushin boundary condition Y in A 0 - A  
being a square lattice with generators parallel to the sides of A. 

In Section 3 we study the jellium model in a circle A, A 0 being a 
concentric circle and the Dobrushin boundary condition Y being a regular 
configuration in A 0 - A  given by equidistant points on regularly spaced 
circumferences concentric with A, A 0. 

In Section 4 we study the jellium model in a square A with periodic 
boundary conditions in one direction, i.e., a jellium model on a cyclinder. 
A o is a larger cylinder with the same basis and Y is a square lattice with 
generators parallel to the sides of A. 

In all cases the method of proof consists in showing that the average of 
]AI-1VA,& with respect to the canonical Gibbs measures given by HA, 
respectively, HA,A0, converge to zero as A, A01"R 2. This is shown by explicit 
computations using the Coulomb potential and the symmetries of the 
models, together with estimates on one-particle canonical correlation func- 
tions discussed. (18) 

2. THE COULOMB PLASMA IN RECTANGULAR DOMAINS 

Let A be a bounded domain in ~2 and let N be a fixed integer. Let H 
be the following function of x --= (x I . . . . .  xN), where x i ~ A, i = 1 . . . . .  N: 

N N 
HA(X) ~ E ~)(Xi ,Xj) -- 0 E ;A~P(X'Xi) dX'l- 1 02( ( ,<j i=1 2 JA.)A ~(x' y)dxdy (2.1) 

1 

where p~-N/IAI ,  IAI being me volume of A, and ~(x,y)  =- -(1/2~r) 
ln[x - y[ is the Coulomb potential between x, y. 

H A is lower bounded, in fact it was proven in Ref. 3 that 

H A >1 --N[ 3 + �88 (2.2) 
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H A is the interaction for the system of N charged particles interacting in A 
between themselves and a fixed background described in Section 1. By (2.2) 
for any fl /> 0 the function of A (and r ,  N) 

QA ~- ~ . I / a ~ e x p [ -  flHA(x)] dx (2.3) 

with dx =- I-IN= 1 dxi is well defined. QA is the canonical partition function 
associated with the system. As shown in Ref. 3, we have QA > 0; in fact 

QA >/ exp [ -- O In p + flOa (O) ] (2.4) 

with a(p) a bounded measurable function of O. Thus the canonical free 
energy 

fA ------ - ( fl ]A])-qn QA (2.5) 

is well defined. 
Let A 0 be a bounded measurable domain such that A 0 D A and such 

that IA0 - Alp is an integer. Let e -- (e I , e2) with e i for i = l, 2 fixed linearly 
independent vectors in R 2, and let Z e be the lattice with integer coordinates 
spanned by the ei, i.e., 

7/c- lie,, E 
i=1  

Denote (A o - A)d the points of ~e lying in A - Ao, i.e., (A o - A)d ~ (A o - 
A) C / 7 ,  and define 

N 

VA,Ao-- E E W(x,,x,)-- E o f Aw(x,x,)ax 
i=  1 xz~(Ao-A)d  xzE(A0--A)d 

N 

- z= , fAo_ W(x, xOax+ / f o_AW(x, y)ay]ax (2.6) 

As described in Section 1, VA, A0 gives the total interaction of the charges in 
A and ( A 0 -  A)d, except for the total self-interaction in (A 0 - A ) a .  Simi- 
larly as in the proof mentioned above of the lower bound on H A one proves 
that x = ( X l , . . . ,  XN)~ VA,Ao(X) is well defined and lower bounded, so 
that also 

HA,Ao(X) -- HA(x ) + VA,Ao(X ) (2.7) 

is lower bounded and measurable in x. Thus the corresponding canonical 
partition function 

~ ( N !  )-'fAuexp[- flHA, Ao(X)]dx (2.8) QA,Ao 

is well defined for all fl ~> 0, is strictly positive, so that the corresponding 
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free energy 

is well defined. 
Let 

and 

fa,ao ~ - (/3 [AI)- 'In QA,& (2.9) 

dg A = (N!QA) - 'exp[ - firth(X) ] dx (2.10a) 

dgA,ao -- (N! QA,Ao)-lexp[ --/~HA,Ao(X) ] dx (2.10b) 

and denote by ( )0 and ( ) z )  expectations with respect to /~A and /ZA,A0, 
respectively. By Jensen's inequality we have, by introducing the definition 
of HA,Ao into the one of Qa,Ao, 

Qa,Ao >~ QAexp(- •< V~,~o>o ) (2.11) 
On the other hand, again by Jensen's inequality applied to QA/QA,&, 

QA = QA, A0 Qa/QA,Ao > QA,AoeXp( -- 8(VA,Ao>D) (2.12) 

From (2.11) and the definitions (2.5) and (2.9) of fA and fA,Ao, respectively 
we get 

fA,Ao - fA < [AI- '< vA,ao>O (2.13) 

On the other hand, using (2.12) instead of (2.11), we get 

fA,Ao--fa > IAI-'(VA,&>D (2.14) 

In order to control the limit of the right-hand sides of (2.13) and (2.14) as 
A, Ao~'R 2, we introduce the corresponding one-particle correlation functions 
gA(x) and gA,&(X), X E A: 

N - 1  

gA(x)--[(N-1)!QA]-lfAN_,exp[--BHA(x, . . . . .  x N _ , , x ) ]  I-I dxi 
i = 1  

(2.15) 

and 

gA,Ao(X) = [ ( N -  1)!QA,Ao] -1 

N - - I  

• faN_exp[-- flHA,Ao(X, . . . . .  XN_ l ,X)] r I  dxi (2.16) 
i = 1  

Due to the lower bounds on H A and HA,Ao these functions are well-defined 
bounded measurable functions of x. Moreover, they are non-negative and 
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have integral equal to N = plAI, i.e., 

fA gA(X) dx= fA gA'A~ dx= U = o[AI (2.17) 

In particular thus ga, gA,Ao ~ L1( A, dx) A L~ dx). From the definition of 
VA,ao and gA, (2.6) and (2.15), respectively, we have 

( VA'A~ = fA [ gA(X) -- p] FA'A~ dx (2.18) 

where 

FA,&(x) ~ E [cp(x,x,) - 
xl ~ (Ao- A) d 

y) dy], C / -  G Cq (Ao - A) 

(2.19) 
C t denotes the Wigner-Seitz cell with center x t. In this derivation we have 
used that, for x ~ A, 

f&_ffp(x ,  y)dy= • ( cp(x,z)dz (2.20) 
x/E (Ao- A) d aC; 

All integrals are well defined, due to the fact that ~(x, y) is smooth for 
y v a x. We remark also that 

fCI(~(X,Z) JCo( ~(X,X I "['- bl) du (2.21) 

with 

so that 

with 

Co={U ~ff~Z[u= z -  x,,z ~ Q N ( A  o -  t ) }  

FA,Ao(x) = E tp (X, X,) (2.22) 
Xl E (Ao - A) d 

~p(x,x,) =-- ~o(x,x,) - p2fp(x,x  ̀  + u)du (2.23) 

In a similar way we obtain 

( Va,a0}D = ~ [  gA,&(x)-p]Fa,&(x)dx (2.24) 

Let now A and A o be squares in N 2, centered at the origin, with sides 
parallel to the sides of the coordinate axis, with unit vectors e i. The sides 

have lengths (fN-a) and ( ~ 0 a )  for some fixed a > 0, and some integers 

N, N o, with N o > N. 
We take for simplicity N, N o such that N = k 2, N o = ko 2, with k, k o 

integers. We choose the lattice (A o - A ) u  to be [aZ2N (A o -A) ] .  In this 
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case Co= (v E R2lvl < a/2, i= 1,2) and the distance from A to (A o -  
A)a is a. Let us denote by A the set A ~  (v E R21v = v I + v2, vl ~ A ,  
v 2 ~ Co). We then have, using the translation invariance of % 

fAax[fc?r 
=f~dY[fcoce(Y, xl)du ] =a2f~dYce(Y,X,) 

Thus: 

IA[-lfAFa,Ao(X)dx=lA}--l ~ ;Ace(x,x~)dx 
xt E ( A o -  A)  a ~ 

- a2lA]-10 ~ f~ce(Y, xt)dY 
X l E ( A o - A )  d A 

= IAI - '  E 'A~'-A ce(y'x')dy 
xf E ( A o -  A)  a ~ 

if we choose P = 1/a2. But for l Y -  xA < 1, y E A -  A we have l Y -  xl] 
> a/2, hence 

ce(y, xl) = - (2~r)-lln[y - -  x A <~ (2~r)-qn(a/2)  

For lY - x~l > 1, y ~ X - A we have 

- 1  2 l Y - x , ]  < ( ~ - )  (a  ( ~ o  + ~ _ ) 2  2 a ( ~ / . ~ _ ~ o  ) + 1)'/2 _A 

thus in all cases 

Ice(y, Xl)l < (2~r)-  lmax(ln a/2, �89 lnA) =--- c (N, N O , a) 

Hence 

IAl-'[LFA, Ao(x)dx <. lA[-'L[FA,Ao(X)ldx 

< (N O - N)c(N,N o ,a)(2a~/-N + 1)~aN 

From this we see that if N, No--> oo in such a way that (N O - N)c(N, No, a ) 
( ~ - ) - 1  _~ O, then we have limN_,~o[A I- lfAIFA,Ao(X)I dx = O. Hence we have 
proven the following lemma. 

L e m m a  2.1. Let (A o - A ) d  = [a7/2CI (A o -A) ] ,  with a = 1/p. Then 

i f  N, No--> oo in such a way that (N O - N ) l n ( ~ o  + ~/N)/~/N -->0, then 

IAI-' fAIFA,Ao(X)[dx-->O [] 
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Remark. The assumption about the convergence of N, N O to oo is 
satisfied, e.g., when N o = N + C2N ~, a < 1/2, as N ~ oo. 

Us ing  this l e m m a  it fo l lows  f r o m  (2.18) an d  (2.24) tha t  
lira [A I- ](V~,A0)x exists, where X stands for 0 or D, iff the corresponding 

limit of [A I- irA gr(x)FA,Ao(X)dx exists, where gr  = ga or gA,A0" 
Suppose now that gA is in L~176 i.e., it is essentially bounded. Then 

we have 

IAl-' fAg,(x)F.ao(X)dx <. IIgAll lAl-' fAIFAao(x)lax 

where II gA[l~ is the L~-norm. The right-hand side converges to zero under 

the assumption that I l g A [ l ~ ( N o -  N)In(V~o + ~ ' ) / ~ - ~ 0 ,  as one sees 

from the proof of Lemma 2.1. 
In the same way one sees that the same holds with gA replaced by 

gA,Ao" Thus we get from (2.18), (2.24) that [A[-I{ Va,Ao)0-~0, and the same 
with { )0 replaced by ( )D. From (2.13), (2.14) we get then the following 
theorem. 

Theorem 2.2. Let A,A 0 be concentric squares of side lengths 
(N/o)  1/2 and (NolO) I/2, respectively, where 0 > 0 is the given density. Let 
Dobrushin boundary conditions be given on (0)-1/2772 C3 (A 0 - A), i.e., on 
the points of the lattice 0-1/2~_ 2 that belong to the complement of A in 
A 0. Suppose that the one-particle correlation functions ga(x) and gA,ao(X) 
are bounded for a.e. x in such a way that as N 0 > N - ~ m  one has 

[Ihl[~ = oh((N/(No- N ) l n ( ~ o  +v/N)]), where h stands for gA or gA,Ao, 

and we use the notation o h (x) to say that o h (x) is a function, depending on 
h, such that oh(x)/Ixl-->O as Ixl---> :e. Then the free energy fA for free 
boundary conditions and the free energy fA,Ao for Dobrushin boundary 
conditions on 0 - 1/2Z2 N (A 0 - A) converge to the same limit as A 0 D AI"R 2. 

Remark. The assumptions on gA, gA,Ao are, e.g., satisfied if these 
functions are uniformly in L = as N O > N o  ~ in such a way that (N o - N)  

l n ( ~  o + ] - N ) / f N  -->0. 

3. THE COULOMB PLASMA IN CIRCULAR DOMAINS  

Let A and Ao be the inner of the circles A = (x  E ~2[Ix ] < R ) and 
A o ~ (x  ~ N2[ Ixl < Ro), respectively, for some R o > R > 0. Let Y be any 
discrete subset of A o - A (below we shall take Y to be a lattice). Let fA be 
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defined by (2.5). Define, correspondingly as in (2.6), 
N N 

VA,Ao(X) - ~ ,  E ,~(x,x,)-O E (q2(y,x)dy-o~,, fA 
i = l x ~ Y  x ~ Y  dA i = 1  o - A q g ( y ' x i )  dy 

Set, moreover, Ha,Ao --= H A + VA,Ao, with H A given by (2.1), and definefA,A ~ 
by (2.8), (2.9). 

In the following we shall need the general mean-value theorem: 

Lemma 3.1. For any ball A on R2, any h E Ll(A, dx) with h(x) 
= h(lxl) and a n y y  ~ A one has 

fAh(Ixl)~(x, y)ax= [ s ]~(y) 
where cp(x, y) = -(2~r)- l lnix - y [  is the logarithmic potential, and we use 
the notation r y) = ~(y).  

Proof. This is a well-known result following from the fact that 
qn(x,y) is harmonic for x ~ y .  �9 

Using this lemma we can easily prove the following lemma. 

I .emma 3.2. For circular domains A, A o one has (VA,Ao)0 = 0 and 

fA,Ao < fA" 

Proof. As in Section 2, we prove easily 

fA,Ao--fA < IAl-'(VAao)O (3.2) 

Hence it certainly suffices to prove (VA,Ao)0 = 0. From the definition (2.15) 
of gA we have that gA(x) is invariant under rotations, since HA(x) is 
invariant under the rotation of all the xi in R 2 and the integration domain 
A N in the definition of g is also rotation invariant, A being here a circle. 

Using the fact that 

s plAI (3.3) 

the lemma follows using the analog of the together with Lemma 3.1, 
formula (2.18), namely, 

with 

< VA,Ao>O = s  gA(x) -- O] FA,~o(X) dx (3.4) 

&ao(X) - ~] , ( x ,  y) - PfA yer o_AiP(x, y)dy (3.5) 
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In fact 

s X W(Y)-O21AIs (3.6) 
yet  

where we used (3.5), (3.3), and Lemma 3.1, and similarly 

--fA&,ao(X) dX = --Ill E ~00') § 01alfA ~ A~(y) dy 
y ~ y  

Thus (Va,ao)O = 0 and the lemma is proven. �9 

I .emma 3.3. Let A, A o be concentric circular domains as in Lemma 
3.2 and let, as in Section 2, (Va,ao)D be given by (2.6). Then 

(VA,~o)~ = X ( (g~o(x) - o)~(x, y)dx 
y ~  y d A  ' 

and 

- -1  1 X Ial (VAao)D = ]al- s ) X [ , ( x - - y )  -- ~(y)]dx 
y ~ Y  

Proof. We use the representation (2.18) of (VA,&) D, i.e., 

(v~a0>~ = -fAax[gA,Ao(X)--p]&,~o(X) (3.7) 

with FA,ao given by (3.6). We now prove that (as in the rectangular case) the 
contribution to (3.7) f rom the background is vanishing, because of symme- 
try reasons. In fact 

f~ ~x E ~ ~o(X)-~ i f  ~ _ ~  ~(~, ~)+-- ~, ~ I ~ ~o.) -~ J(o~ ~(~) ~ 
(3.8) 

where we used the fact that 

fAo_ A~( x' y) dy= fAo_ Aq~( y) dy 
by the invariance properties of rp and the domains. But fa  dx[gA,Ao (x) -- O] 
=0 ,  hence (3.8) vanishes, fAo_A~(y) dy being independent of x. This 
proves the first equality in the lemma. 

To prove the second one we only need to remark that, using the first 
one, we have 

= Z (gAAo(X)ep(x--y)dx--o Z (~(x,y)dx (3.9) 
y ~  y d A  ' y C  y d A  
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But for the second term we have, using Lemma 3.1, 

P 
y E Y  y ~ Y  y @ Y  

where in the latter inequality we have used (2.17). Introducing (3.10) in 
(3.9) we get the lemma. �9 

R e m a r k .  We believe it should be possible to show from Lemma 3.3 
that limA,A01,a~lA[-1< VA,A0) D = 0, for a given lattice structure Y in A 0 - A, 
e.g., triangular or cubic (see also the remark at the end of this section). In 
the following we shall, however, restrict our considerations to special 
discrete sets Y which have nice discrete rotafion-invariant properties. 

Let us consider circles C i of radii R i, i = 1,2 . . . .  centered at the 
origin. Take on C~ equidistantly placed N/charges x} 0, l = 1 . . . . .  N i. Let 
as before A be the inner of the circle with center at the origin and radius 
R < R i. Let A o be the concentric circle with radius R 0 = Rio for some i 0. 
We have the following lemma. 

Lemma 3.4. Let q~ be the logarithmic potential and let x} ~ be 
equidistant points on the circumference Ci, 1-- 1, . . . ,  N i. Then for any 
N , ~  

N+i  
2 q)(I x - x} i )[ / lx} i )[)  = �89 + (Ixl/R,) ~+') (3.11) 
1=1 

with the notation cp([xl) =-- ~(x). 

Proo f .  We have with)'  ~ ] x l / g i  = Ixl/Ix?l 
1 ECP(I  x -- x ( i ) l / [ x ( i ) i )  ---- E ~q0[1  - I - ) ' 2  2y cos(q0z- %)]  

l l 

, (  e"  o'J = ~e# I~ [ ), - [ ), - e 
l 

where we have used the angles q~t, % of the vectors x} 0 and x, respectively, 
with respect to some given reference axis. But 

N+i  
I I  [ y - e i ( ~ t - ~ ~ 1 7 6  N+~ + I (3.12) 
l=1 

From (3.11), (3.12) we then get the lemma. �9 

Remark .  It might be amusing to note that the right-hand side of the 
inequality in Lemma 3.4 is minus the free energy of the one-dimensional 
Ising model with periodic boundary conditions, for coefficients t ,  J such 
that th flJ = [ x [ / R  i. 

We shall now use Lemma 3.4 to estimate the quantity [A[-I(VA,:Xo)D 
in Lemma 3.3. We get, splitting the sum ~ y E r  with Y=--(x}/), l =  



Remarks on the Independence of the Free Energy 401 

1 . . . . .  N + i ; i = l , 2  . . . .  

IA[- l( VA,Ao)D 
i0 Ni 

= [ A I - I E  Z ( g A A o ( X ) [ q ) (  x -  X(i)) - CP(x(li))] dx 
i=ll=lJA ' 
6 N, 

= ]A1-1Z Z (, gA,ao(X)~(I x -  X(li) l/IX(li)[) dX (3.13) 
i=1 l=l  JA 

where we used the property cp(x)-  q0(y)= +(Ixl, lY[) of the logarithmic 
potential. Using Lemma 3.4, (3.13) is equal to 

io 
(2rA])-' 2 ~ ga,ao(X)q'[ 1 + (]x]/& )U,] dx 

i=l 
Hence we have proven the following: 

Lemma 3.5. Let A, A o be concentric circular domains, A o D A with 
center at the origin. Assume in A o - A is given a regular configuration of 
positive charges as described above. Let (VA,Ao)D be given by (2.6), with 
(A o - A)a the points where the positive charges are situated. Then 

io 
IA]-IfVA,Ao)D =(2lAI)-li~=,fAgA,ao(X)~[l + ( Ix] /R i ) i ' ldx  �9 (3.14) 

From this lemma we can now control easily the limit A 0 D A'I'R 2. We 
have, namely, for all x ~ A 

q0[1 " ] - ( Ix l /R i )  Nil = - (2qr ) - l ln [  1 + (Ixl/Ri) Nil 

> - (2~r)-~(]xl/R i)N' (3.15) 

where we used the definition of cp and the inequality - ln(1 + q) > - q  for 
all q > 0. Assume now that for 

p[A] = U E N 

i.e., 

R = (N/p~r) '/2 

gA,Ao(X) < C(N)  

for a.a. x and some constant C(N). 

(3.16) 

(3.17) 
(3.18) 

Then introducing this and (3.15) into the integral in (3.14) we obtain 
wi thR s = R + a  i , a  i > 0 , i =  1,2 . . . .  

= _ C(N)R2(R/Ri )N, (N,  + 2) -1 
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and thus 

io 

1 C(N)R 2 IAI-'(VA'A~ >/ -- 2--~ 2 (Ni + 2 ) - I [R / (  R + ai)] si 
i = l  

Taking i0---> oo yields 

lira [A[-~(VA,A0)D > -(2[AI)-~C(N)R 2 ~ (Ni + 2)-~[ R / ( R  + a3 ] Ni 
A0"• 2 i = 1 

and with (3.16) and (3.17) 

C(N) 
lira lim IA[-l(VA,A0) D > _ lim ( N / +  2)-  I 
A~,~2 Aol, a2 N~oo 2~r /= 1 

As before we now assume that C(N)= O(x/N-). Then if we first choose 
a~---i and impose neutrality outside of A, then as one easily computes, 
setting for simplicity pw = 1, we have that 

N, = 2fN- + 2i - 1 

Then we can estimate in (3.19) using q < e q-~ for 0 < q ~< 1 

i = 1  i = l  

< N- ' /2e(1/1 - e -2) 

so that 

lim lim IAI-I(vA,Ao)D = 0 (3.20) 
A-],R 2 Aol, R 2 

Let us consider the case where we do not impose charge neutrality outside 
of A and take ai = i and N~ = f N .  Then we estimate in (3.19) 

~, ( f N  + 2 ) - ' [  S / ( f N  + i ) ] ~  <(fN-  + 2)- ' fo~176 [ ~ - / ( f N  + x ) ]  ~ dx 
i = l  

= (x/N + 2 / - l [ ~ - / ( g  - l l ]  

where we used that (x/N-/(x~ + i)) ~ is strictly decreasing with i. Thus 
(3.20) follows with C(N) = O(,,/N). 

We summarize the above discussion in the following theorem. 

Theorem 3.6. Let N be an integer and A be the circle with center at 
the origin of radius R = (N/pw) 1/2. Let a i be any sequence of positive 
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numbers and R i = R + a i, i = l, 2, . . . ,  and let C i be the circle of center 
the origin and radius R i. Take on C~. equidistantly placed Ni charges. Let A 0 
be the concentric circle of radius R,. for some i o. Let fA and fa,Ao be defined 
as in Section 2. Then, under the assumption gA,~%(x) <~ C ( N )  for some 
constant C(N) ,  we get 

lira lira fA A = lira fA 
2 a~ , 0 

A l " a  2 AoI"R AI"R z 

if N i, a i, and C ( N )  are such that 
oo 

lira C ( N )  ~ (N~ + 2 ) - ' { ( N / o ~ r ) ' / 2 / [ ( N / o T r ) ' / 2  + a i ] }N '=o  
N ~ ' ~ 1 7 6  i ~  1 

The latter assumption is, e.g., verified when C ( N )  = O(~/N), p~r = I, a i = i 

and in addition N i = 2 f N  + 2i - 1 or N i = ~/N. 

Remark .  The configuration in A 0 - A  ("boundary condition") for 
which Proposition 3.1 holds corresponds to a "disturbed" crystal. A corre- 
sponding study of a triangular or square lattice configuration involves nice 
number theoretical problems concerning the distribution of lattice points in 
circles; see, e.g., Ref. 22. 

Ftornark. The assumptions in Theorem 3.6 concerning gA,Ao are of 
the same type as those in Theorem 2.2. Therefore the remarks following 
Theorem 2.2 hold also here. 

4. THE COULOMB PLASMA IN CYLINDRICAL DOMAINS 

Let now A --= A N be the surface of the cylinder S l • [ _ N - l / 2 ,  N + 
1/2], for some integer N, S 1 being a circle of radius R = M/27r,  for some 
integer M. Let A o =-- Auo be S 1 X [ - N o - 1/2, N o + 1/2], for some integer 
N o > N. Let us choose Cartesian coordinates (xl ,  x2) with the origin at the 
center of symmetry of A, such that we have a periodicity of period M in the 
x 2 direction. The corresponding Coulomb potential q~(x,y), with free 
boundary conditions, is given by 

�9 ( x , Y ) ~ - - M - ' f a , d q ,  E 2~(q~ + q~) -1 
q 2 = 2 ~ ' n / M  

M [ X ~ - X 2 [ - ~ l n  1 +  

- 

(4.1) 
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where, 

0 ~< X2, Y2 < M, - N  - 1/2 ~< Xl, y~ <<. N + 1/2 

Let us consider a square lattice configuration Y in A 0 - A  of positive 
charges, i.e., we place positive unit charges at the points (x~,i, x2,j) with 

x l , i = + ( N + i ) l  i = 1  . . . . .  N o - N ,  x2.j=j,  j = l  . . . . .  M 

We can then derive similarly as in Section 3, that, for symmetry reasons, 

lim VAao = 0 (4.2) 
Ao?~2 ' 

from which it then follows, as in Section 3, 

lim A,ao-  fA < 0 (4.3) 
A0~'R 2 

Moreover we get similarly as in Section 3 

l fgA,Ao(X ) ~ ln[1 + ~2--2~COS-~(X2--y2)] (4.4) (VA,Ao)  = - -  
y@Y k 

with ~ -- exp[-(2~r /M)lx  1 - Y1[], where we used the reflection symmetry of 
gA,Ao(X) in the x 1 coordinate to cancel the contribution of the term 
- ( ~ r / M ) l X l -  Yll in the potential. Now we compute the sum over Y as 
ENo-N ~'~M We remark that, calling ~; the quantity defined as ~ with i=N-No/,j= 1" 
Yl = N + i, we have 

M 

E -- l ln[l+(gi2--2 ' iCOS~(X2--Y2j)]  
j = l  

_ 1 ln(1 + ~i TM + 2~iMcos2~rX2) > --~i M 
2 

Introducing this into (4.4) we get 

N O - N 
<Va,ao>O = - s  dx ga,a0(x) ~ (e -2 rlx'-(N+i)l + e -2<xl+(N+i)[) 

i = 1  

/> - -  JAf 8A'A~ r~~e-Z~U[eZcX'rl[ ~ - -  e - 2 r 1 7 6  - -  e - 2 ~ ) - I  

+ e-2-x,(1 _ e-2,(No-N))(1 _ e -Zr  

(4.5) 

Let us now assume the bound I1 gA,AolI~ < C(N). Introducing this into (4.5) 
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we get 

[AI-'(VA,Ao)D /> - C, (N)e -2~ ,u / (1  - e-2, , )  

405 

• fA [ e2~X'(1 -- e - 2~(N0- N)) + e - 2~x'(1 - e - 2~(N0- lv))] dx, 

C ' ( N )  =-- C ( N ) / M ( 2 N  + 1) 

h e n c e  

lira IAI- '(  VA,AoS  -- e -2~U(l - e-2~)  - '  M (e2~(U+ ,/2) _ e-2~(U+ ,/2)) 
No---) oo 

and thus 

lira lim [AI-'(VA,Ao}D = 0 
N---) oo No- - )  cx~ 

This then yields, similarly as in Section 3 

lira lim fA,Ao--fA ~> 0 
N---) oo N o - ~  oo 

which together with (4.3), yields 

lira lim fAao= lira fA 
N - - )  oo No-- )  oo ' N--+ or 

Hence we have the following theorem. 

T h e o r e m  4.1. Let A,A 0 be the surfaces of cylinders S~ • [ - N -  
1/2, N + 1/2] respectively S 1 • [ -  N o - 1/2, N o + 1/2], with integers 
N o > N and S~ the circle with center at the origin and radius R = M / 2 ~  
for some integer M. Let fA and fA,Ao be, respectively, the canonical free 
energy with free boundary conditions, in A and the Dobrushin boundary 
conditions in A o -  A, consisting of placing unit positive charges forming 
the square crystalline configuration Y described above. Then the bound 
tr ga,ao[t:r = o ( N )  implies 

lira lim f A A =  lira fa  
N--'..or No- - )oo  a .  , o N-->or 

Remark. Instead of the above square crystalline configuration we 
could have taken as well a smooth positive charge distribution in the 
x2-direction, for example p(xl ,  x2) = 2 0 sin2(~rx2). In a similar way as above 
one arrives at the formula 

(v ,AoS  = fA(gA,A0(x) - -  0)F ,Ao(X) dx 



406 Albeverio, Drift, and Merlini 

with 

with 

277 - ls ~ l n [ l + ~ ] - 2 ( y c o s - ~ ( ~ - y 2 ) ]  F A,Ao( X ) =-- -~ 
y ~ Y  L 

X [ 2 0 sin2~n? - P ] 

Integration by parts gives 

1 o 2 fo~d~ FA'A~ 2 M y e y  o 

X 2~vSin 2 ~ r .  ~ - ( ~  - y2)sin47r~/[ l + ~/ - 2~ycos-~ ( ,  - y2) 1 

1 
= gO N ~/~176 M )  

y E Y  

Hence 

0 k c ~  lira ,~ . .F~A0(X')= 

= ~ cos(2~rx2)(1 e -2~)-  lexpf - 2Tr(R 

Using the bound tl gA,a011~ = o(g), see Ref. 18, we deduce that 

lim lim IAI- 1(VA,a0>D = 0 
N-->~ No~oO 

Similarly as in Theorem 4.1 one proves 

lira lim . . _ ,. -[Ah-I(VA,Ao)0 = 0  
N-->~ N0--> ~ 

and thus Theorem 4.1 extends to the case of the present Dobrushin 
condition. 

Remark, The assumptions in Theorem 4.1 are of the same type as in 
Theorem 2.2 and Theorem 3.7. Thus the same remarks on when the 
assumptions on gh, ga,Ao are satisfied hold. See also Ref. 18. 
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